Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(2): 187-204, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052476

RESUMO

For a long time, myelin was thought to be restricted to excitatory neurons, and studies on dysmyelination focused primarily on excitatory cells. Recent evidence showed that axons of inhibitory neurons in the neocortex are also myelinated, but the role of myelin on inhibitory circuits remains unknown. Here we studied the impact of mild hypomyelination on both excitatory and inhibitory connectivity in the primary auditory cortex (A1) with well-characterized mouse models of hypomyelination due to loss of oligodendrocyte ErbB receptor signaling. Using laser-scanning photostimulation, we found that mice with mild hypomyelination have reduced functional inhibitory connections to A1 L2/3 neurons without changes in excitatory connections, resulting in altered excitatory/inhibitory balance. These effects are not associated with altered expression of GABAergic and glutamatergic synaptic components, but with reduced density of parvalbumin-positive (PV+ ) neurons, axons, and synaptic terminals, which reflect reduced PV expression by interneurons rather than PV+ neuronal loss. While immunostaining shows that hypomyelination occurs in both PV+ and PV- axons, there is a strong correlation between MBP and PV expression, suggesting that myelination influences PV expression. Together, the results indicate that mild hypomyelination impacts A1 neuronal networks, reducing inhibitory activity, and shifting networks towards excitation.


Assuntos
Córtex Auditivo , Parvalbuminas , Camundongos , Animais , Parvalbuminas/metabolismo , Córtex Auditivo/metabolismo , Receptores ErbB/metabolismo , Interneurônios/metabolismo , Oligodendroglia/metabolismo
3.
Sci Rep ; 12(1): 17267, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241655

RESUMO

Like all receptor tyrosine kinases (RTKs), ErbB4 signals through a canonical signaling involving phosphorylation cascades. However, ErbB4 can also signal through a non-canonical mechanism whereby the intracellular domain is released into the cytoplasm by regulated intramembrane proteolysis (RIP) and translocates to the nucleus where it regulates transcription. These different signaling mechanisms depend on the generation of alternative spliced isoforms, a RIP cleavable ErbB4-JMa and an uncleavable ErbB4-JMb. Non-canonical signaling by ErbB4-JMa has been implicated in the regulation of brain, heart, mammary gland, lung, and immune cell development. However, most studies on non-canonical ErbB4 signaling have been performed in vitro due to the lack of an adequate mouse model. We created an ErbB4-JMa specific knock out mouse and demonstrate that RIP-dependent, non-canonical signaling by ErbB4-JMa is required for the regulation of GFAP expression during cortical development. We also show that ErbB4-JMa signaling is not required for the development of the heart, mammary glands, sensory ganglia. Furthermore, we identify genes whose expression during cortical development is regulated by ErbB4, and show that the expression of three of them, CRYM and DBi, depend on ErbB4-JMa whereas WDFY1 relies on ErbB4-JMb. Thus, we provide the first animal model to directly study the roles of ErbB4-JMa and non-canonical ErbB4 signaling in vivo.


Assuntos
Transdução de Sinais , Tirosina , Animais , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Tirosina/metabolismo
4.
Aging Cell ; 21(10): e13708, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088647

RESUMO

Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly. This progressive pathology often has psychological and medical comorbidities, including social isolation, depression, and cognitive decline. Despite ARHL's enormous societal and economic impact, no therapies to prevent or slow its progression exist. Loss of synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs), a.k.a. IHC synaptopathy, is an early event in cochlear aging, preceding neuronal and hair cell loss. To determine if age-related IHC synaptopathy can be prevented, and if this impacts the time-course of ARHL, we tested the effects of cochlear overexpression of neurotrophin-3 (Ntf3) starting at middle age. We chose Ntf3 because this neurotrophin regulates the formation of IHC-SGN synapses in the neonatal period. We now show that triggering Ntf3 overexpression by IHC supporting cells starting in middle age rapidly increases the amplitude of sound-evoked neural potentials compared with age-matched controls, indicating that Ntf3 produces a positive effect on cochlear function when the pathology is minimal. Furthermore, near the end of their lifespan, Ntf3-overexpressing mice have milder ARHL, with larger sound-evoked potentials along the ascending auditory pathway and reduced IHC synaptopathy compared with age-matched controls. Our results also provide evidence that an age-related decrease in cochlear Ntf3 expression contributes to ARHL and that Ntf3 supplementation could serve as a therapeutic for this prevalent disorder. Furthermore, these findings suggest that factors that regulate synaptogenesis during development could prevent age-related synaptopathy in the brain, a process involved in several central nervous system degenerative disorders.


Assuntos
Células Ciliadas Auditivas Internas , Perda Auditiva , Animais , Cóclea/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Camundongos , Gânglio Espiral da Cóclea/patologia , Sinapses/patologia
5.
Dev Neurobiol ; 81(5): 546-567, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33561889

RESUMO

The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.


Assuntos
Vias Auditivas , Cóclea , Estimulação Acústica , Animais , Vias Auditivas/fisiologia , Axônios , Cóclea/fisiologia , Humanos , Mamíferos , Neuroglia
6.
Horm Behav ; 120: 104690, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31954709

RESUMO

Changes to neonatal nutrition result in long-lasting impairments in energy balance, which may be described as metabolic programing. Astrocytes, which are interconnected by gap junctions, have emerged as important players in the hypothalamic control of food intake. In order to study the effects of nutritional programming on glial morphology and protein expression, cross-fostered male Wistar rats at postnatal day 3 were assigned to three groups based on litter size: small litter (3 pups per dam, SL), normal litter (10 pups per dam, NL), and large litter (16 pups per dam, LL). Rats from the SL group exhibited higher body weight throughout the study and hyperphagia after weaning. LL animals exhibited hyperphagia, high energy efficiency and catch-up of body weight after weaning. Both the SL and LL groups at postnatal day 60 (PN60) exhibited increased levels of plasma leptin, the Lee index (as an index of obesity), adiposity content, immunoreactivity toward T-cell protein tyrosine phosphatase (TCPTP), and glial fibrillary acidic protein (GFAP) in the arcuate nucleus (ARC) of the hypothalamus. Astrocyte morphology was altered in the ARC of SL and LL animals, and this effect occurred in parallel with a reduction in immunoreactivity toward connexin 30 (CX30). The data obtained demonstrate that both neonatal over- and underfeeding promote not only alterations in the metabolic status but also morphological changes in glial cells in parallel with increasing TCPTP and changes in connexin expression.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Conexinas/genética , Gliose/etiologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Adiposidade/fisiologia , Animais , Animais Recém-Nascidos , Conexinas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gliose/genética , Gliose/metabolismo , Hiperfagia/complicações , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Hipotálamo/metabolismo , Tamanho da Ninhada de Vivíparos/fisiologia , Masculino , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Gravidez , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Ratos , Ratos Wistar , Fatores Sexuais , Fatores de Tempo
7.
J Neuroendocrinol ; 31(5): e12685, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30618188

RESUMO

Nutrition and growth are important signals for pubertal development, although how they are perceived and integrated in brain circuits has not been well defined. Growth hormones and metabolic cues both recruit phosphatidylinositol 3-kinase (PI3K) signalling in hypothalamic sites, although whether they converge into the same neuronal population(s) is also not known. In this review, we discuss recent findings from our laboratory showing the role of PI3K subunits in cells directly responsive to the adipocyte-derived hormone leptin in the coordination of growth, pubertal development and fertility. Mice with deletion of PI3K p110α and p110ß catalytic subunits in leptin receptor cells (LRΔα+ß ) have a lean phenotype associated with increased energy expenditure, locomotor activity and thermogenesis. The LRΔα+ß mice also show deficient growth and delayed puberty. Deletion of a single subunit (ie, p110α) in LR cells (LRΔα ) causes a similar phenotype of increased energy expenditure, deficient growth and delayed pubertal development, indicating that these functions are preferably controlled by p110α. The LRΔα mice show enhanced leptin sensitivity in metabolic regulation but, remarkably, these mice are unresponsive to the effects of leptin on growth and puberty. PI3K is also recruited by insulin and a subpopulation of LR neurones is responsive to i.c.v. insulin administration. Deletion of insulin receptor in LR cells causes no changes in body weight or linear growth and induces only a mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in growth and reproduction. We will also discuss the potential neural pathways underlying these effects.


Assuntos
Crescimento/fisiologia , Sistemas Neurossecretores/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores para Leptina/metabolismo , Reprodução/fisiologia , Animais , Humanos , Neurônios/metabolismo , Puberdade/metabolismo , Transdução de Sinais
8.
Mol Cell Endocrinol ; 482: 62-69, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30572001

RESUMO

Leptin and LPS has been implicated in the development of hypothalamic astrogliosis in rodents. Astrocytes, which are interconnected by gap junction proteins, have emerged as important players in the control of energy homeostasis exerted by the hypothalamus. To investigate the hypothesis of action of T-cell protein tyrosine phosphatase (TCPTP) on the astrocyte morphology, astrocytes from the hypothalamus of one-day-old rats were stimulated with leptin and LPS (used as a positive control). Leptin and LPS induced a marked increase in astrocyte size, an increase in Ptpn2 (TCPTP gene) and gap junction alpha-1 protein, - Gja1 (connexin 43 - CX43 gene) mRNA expression and a decrease in gap junction protein, alpha 6 - Gja6 (CX30 gene) mRNA expression. Remarkably, these effects on astrocytes morphology and connexins were prevented by Ptpn2 siRNA. Astrocytes are known to produce cytokines; here we show that TCPTP acts as an important regulator of the cytokines and it possesses a reciprocal interplay with protein tyrosine phosphatase 1B (PTP1B). Our findings demonstrate that leptin and LPS alter astrocyte morphology by increasing TCPTP, which in turn modulates connexin 30 (CX30) and connexin 43 (CX43) expression. TCPTP and PTP1B seem to act in the regulation of cytokine production in astrocytes.


Assuntos
Astrócitos/citologia , Hipotálamo/citologia , Leptina/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células Cultivadas , Conexina 30/genética , Conexina 43 , Citocinas/metabolismo , Hipotálamo/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Ratos , Ratos Wistar , Regulação para Cima
9.
Am J Physiol Endocrinol Metab ; 316(1): E121-E134, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376348

RESUMO

Hypothalamic neurons detect changes in circulating hormones such as leptin and insulin and put forward outputs to sustain energy and glucose homeostasis. Because leptin and insulin receptors colocalize in ~40-60% of neurons in the hypothalamus, we characterized the metabolic phenotype of mice with selective deletion of the insulin receptor (InsR) in LepR cells. LRΔInsR mice presented no difference in body weight and insulin levels but increased fat mass. In the light phase, LRΔInsR mice exhibited increased food intake, locomotor activity, carbon dioxide production, and respiratory exchange rate. These mice showed reduced fat oxidation and reduced expression of cluster of differentiation 36 and AMP-activated protein kinase-α1 in the liver, increased glucose oxidation in the light phase, and overall reduced basal glucose levels. To verify the impact of InsR deletion in LepR cells in obesity, we generated ob/ ob InsRfl, ob/ ob LRcre, and ob/ ob LRΔInsR mice. The ob/ ob LRΔInsR mice had higher body weight, fat mass, and expression of genes related to fat metabolism in the liver. No difference in food intake despite increased neuropeptide Y and agouti-related peptide expression, and no difference in energy expenditure, fat, or glucose oxidation was found in ob/ ob LRΔInsR compared with LRcre or LRΔInsR controls. Remarkably, basal glucose levels were reduced, and the expression of genes associated with glucose metabolism in the liver was higher. Insulin signaling in LepR cells is required for the proper fat and glucose oxidation. These effects are independent of leptin given that the leptin-deficient ob/ ob LRΔInsR mice also presented reduced glycemia and higher adiposity. The mechanisms underlying these responses remain to be unveiled.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Receptor de Insulina/genética , Receptores para Leptina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antígenos CD36/metabolismo , Metabolismo Energético , Feminino , Deleção de Genes , Homeostase , Hiperinsulinismo/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos
10.
Endocrinology ; 159(4): 1718-1733, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438518

RESUMO

Obese women are at high risk of pregnancy complications, including preeclampsia, miscarriage, preterm birth, stillbirth, and neonatal death. In the current study, we aimed to determine the effects of obesity on pregnancy outcome and placental gene expression in preclinical mouse models of genetic and nutritional obesity. The leptin receptor (LepR) null-reactivatable (LepRloxTB), LepR-deficient (Leprdb/+), and high-fat diet (HFD)-fed mice were assessed for fertility, pregnancy outcome, placental morphology, and placental transcriptome using standard quantitative polymerase chain reaction (qPCR) and qPCR arrays. The restoration of fertility of LepRloxTB was performed by stereotaxic delivery of adeno-associated virus-Cre into the hypothalamic ventral premammillary nucleus. Fertile LepRloxTB females were morbidly obese, whereas the wild-type mice-fed HFD showed only a mild increase in body weight. Approximately 80% of the LepRloxTB females had embryo resorptions (∼40% of the embryos). In HFD mice, the number of resorptions was not different from controls fed a regular diet. Placentas of resorbed embryos from obese mice displayed necrosis and inflammatory infiltrate in the labyrinth and changes in the expression of genes associated with angiogenesis and inflammation (e.g., Vegfa, Hif1a, Nfkbia, Tlr3, Tlr4). In contrast, placentas from embryos of females on HFD showed changes in a different set of genes, mostly associated with cellular growth and response to stress (e.g., Plg, Ang, Igf1, Igfbp1, Fgf2, Tgfb2, Serpinf1). Sexual dimorphism in gene expression was only apparent in placentas from obese LepRloxTB mice. Our findings indicate that an obese environment and HFD have distinct effects on pregnancy outcome and the placental transcriptome.


Assuntos
Dieta Hiperlipídica , Regulação da Expressão Gênica , Obesidade/genética , Placenta/metabolismo , Receptores para Leptina/genética , Animais , Feminino , Hipotálamo/metabolismo , Inflamação/genética , Inflamação/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Obesidade/metabolismo , Gravidez , Resultado da Gravidez , Receptores para Leptina/metabolismo
11.
JCI Insight ; 2(23)2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212950

RESUMO

The role of PI3K in leptin physiology has been difficult to determine due to its actions downstream of several metabolic cues, including insulin. Here, we used a series of mouse models to dissociate the roles of specific PI3K catalytic subunits and of insulin receptor (InsR) downstream of leptin signaling. We show that disruption of p110α and p110ß subunits in leptin receptor cells (LRΔα+ß) produces a lean phenotype associated with increased energy expenditure, locomotor activity, and thermogenesis. LRΔα+ß mice have deficient growth and delayed puberty. Single subunit deletion (i.e., p110α in LRΔα) resulted in similarly increased energy expenditure, deficient growth, and pubertal development, but LRΔα mice have normal locomotor activity and thermogenesis. Blunted PI3K in leptin receptor (LR) cells enhanced leptin sensitivity in metabolic regulation due to increased basal hypothalamic pAKT, leptin-induced pSTAT3, and decreased PTEN levels. However, these mice are unresponsive to leptin's effects on growth and puberty. We further assessed if these phenotypes were associated with disruption of insulin signaling. LRΔInsR mice have no metabolic or growth deficit and show only mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in energy expenditure, growth, and reproduction. These actions are independent from insulin signaling.


Assuntos
Leptina/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Receptores para Leptina/metabolismo , Animais , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Estro/fisiologia , Feminino , Fertilidade/fisiologia , Deleção de Genes , Inativação Gênica , Crescimento/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Puberdade/fisiologia , Receptor de Insulina/deficiência , Receptor de Insulina/fisiologia , Maturidade Sexual/fisiologia , Transdução de Sinais/fisiologia
12.
Endocrinology ; 158(9): 2930-2943, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911169

RESUMO

Approximately 15% of human couples of reproductive age have impaired fertility, and the male component accounts for about half of these cases. The etiology is usually unknown, but high correlation with the increase in obesity rates is documented. In this study, we show that diet-induced and genetically obese mice display copulatory behavior comparable to controls, but the number of females impregnated by obese males is remarkably low. Screening for changes in gene expression in the male reproductive tract showed decreased Crisp4 expression in testis and epididymis of obese mice. Lack of CRISP4 in the luminal membrane of epididymal cells indicated inadequate secretion. Consistent with CRISP4 action in acrosome reaction, sperm from mice fed a high-fat diet (HFD) had decreased fertilization capacity. CRISP4 treatment of sperm from HFD mice prior to in vitro fertilization improved fertilization rate. In leptin-deficient obese and infertile mice, leptin's effect to restore CRISP4 expression and function required gonadal hormones. Our findings indicate that the obesity-induced decline in sperm motility and fertilization capacity results in part from the disruption of epididymal CRISP4 expression and secretion.


Assuntos
Fertilização/genética , Infertilidade Masculina/etiologia , Obesidade/complicações , Proteínas de Plasma Seminal/genética , Espermatozoides/fisiologia , Reação Acrossômica/genética , Animais , Epididimo/metabolismo , Feminino , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/genética , Proteínas de Plasma Seminal/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo
13.
Horm Behav ; 93: 166-174, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28576646

RESUMO

Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100µg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40µg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/µl in 5µl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin.


Assuntos
Adenilato Quinase/metabolismo , Grelina/metabolismo , Hipotálamo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Endocanabinoides/metabolismo , Hipotálamo/metabolismo , Masculino , Neuropeptídeo Y/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores de Grelina/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Endocrinology ; 157(12): 4803-4816, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27732087

RESUMO

A temporary and reversible inhibition of the hypothalamo-pituitary-gonadal axis is adaptive when energy reserves are diminished, allowing individual survival and energy accumulation for eventual reproduction. The AMP-activated protein kinase (AMPK) works as a cellular sensor of the AMP to ATP ratio and ultimately of energy availability. Activation of AMPK suppresses ATP-consuming processes and stimulates ATP-producing pathways. The AMPK α2 catalytic subunit is expressed in multiple hypothalamic nuclei including those associated with reproductive control, ie, the anteroventral periventricular nucleus and the arcuate nucleus. Subsets of kisspeptin neurons in the anteroventral periventricular nucleus (20% in females) and arcuate nucleus (45% in males and 65% in females) coexpress AMPKα2 mRNA. Using the Cre-loxP approach, we assessed whether AMPKα2 in Kiss1 cells is required for body weight and reproductive function. The AMPKα2-deleted mice show no difference in body weight and time for sexual maturation compared with controls. Males and females are fertile and have normal litter size. The AMPKα2-deleted and control females have similar estradiol feedback responses and show no difference in Kiss1 mRNA expression after ovariectomy or ovariectomy plus estradiol replacement. In males, acute fasting decreased Kiss1 mRNA expression in both groups, but no effect was observed in females. However, after an acute fasting, control mice displayed prolonged diestrous phase, but AMPKα2-deleted females showed no disruption of estrous cycles. Our findings demonstrate that the AMPKα2 catalytic subunit in Kiss1 cells is dispensable for body weight and reproductive function in mice but is necessary for the reproductive adaptations to conditions of acute metabolic distress.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Jejum/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Maturidade Sexual/fisiologia , Animais , Peso Corporal/fisiologia , Ciclo Estral/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout
15.
Mol Cell Endocrinol ; 438: 36-41, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27389879

RESUMO

Energy balance has in the hypothalamus a central component of integration of food intake and energy expenditure. An accumulating body of evidence indicates that energy homeostasis is largely affected by inflammatory challenges. Severe undernutrition caused by exacerbated inflammatory response may lead to cachexia. On the other hand, prolonged low-grade inflammation such as that observed in obesity and metabolic syndrome, raises the risk for the development of diabetes and heart diseases. Changes in circulating insulin and cytokines such as leptin, interleukins and tumor necrosis factor, as well as changes in their action in the hypothalamus drive the inhibition of food consumption during inflammation. The molecular pathways associated with these responses have only started to be unraveled. One potential candidate is the PI3K signaling, an important player in distinct hypothalamic neurons that control food intake. This study presents an overview of the current knowledge about PI3K role on cytokines and insulin signaling in the hypothalamic regulation of feeding during inflammation.


Assuntos
Ingestão de Alimentos , Inflamação/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Citocinas/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Transdução de Sinais/efeitos dos fármacos
16.
Mol Metab ; 5(6): 379-391, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27257598

RESUMO

OBJECTIVE: Hypophagia and increased energy expenditure under inflammatory conditions, such as that observed after bacterial lipopolysaccharide (LPS) administration, are associated with leptin secretion. The hypophagic effect of leptin depends in part on the activation of PI3K signaling pathway. However, the role of PI3K in the endotoxemia-induced hypophagia has not been determined. METHODS: In an attempt to examine the functional contribution of the PI3K pathway in hypophagia and weight loss induced by LPS (100 ug/Kg, ip), we performed a central pharmacological PI3K inhibition (LY294002). Additionally, to gain mechanistic insights on the role of the catalytic PI3K p110α subunit in leptin responsive cells, mice expressing Cre-recombinase driven by the Lepr promoter (LepR-Cre) were crossed with mice carrying a loxP-modified p110α allele (Pi3kca gene) (LepR(Δp110α)). As studies have suggested that the PI3K p110ß subunit has a dominant role over p110α in energy homeostasis, we further crossed LepR-Cre mice with loxP-modified p110α and p110ß (Pi3kcb gene) alleles (LepR(Δp110α+ß)). In order to verify the requirement of leptin in PI3K effects on food intake, we also used leptin-deficient ob/ob mice. RESULTS: We found that LPS stimulates PI3K and STAT3 signaling pathways in cells expressing the leptin receptor. Central PI3K inhibition prevented LPS-induced hypophagia and weight loss. Genetic deletion of p110α subunit selectively in LepR cells had no effect on LPS-induced hypophagia and weight loss. However, p110α and p110ß double deletion in LepR cells prevented LPS-induced hypophagia and partially reversed the weight loss. Leptin deficiency blunted LPS-induced acute pAKT and pSTAT3 phosphorylation and the acute suppression of food intake. CONCLUSIONS: Our studies show that the PI3K p110ß subunit in LepR cells is required for acute endotoxemic hypophagia. The data provide promising approaches for PI3K inhibition in preventing low energy balance and cachectic states during inflammatory challenges.

17.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1258-66, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101301

RESUMO

Leptin signals energy sufficiency to the reproductive hypothalamic-pituitary-gonadal (HPG) axis. Studies using genetic models have demonstrated that hypothalamic neurons are major players mediating these effects. Leptin receptor (LepR) is also expressed in the pituitary gland and in the gonads, but the physiological effects of leptin in these sites are still unclear. Female mice with selective deletion of LepR in a subset of gonadotropes show normal pubertal development but impaired fertility. Conditional deletion approaches, however, often result in redundancy or developmental adaptations, which may compromise the assessment of leptin's action in gonadotropes for pubertal maturation. To circumvent these issues, we adopted a complementary genetic approach and assessed if selective reexpression of LepR only in gonadotropes is sufficient to enable puberty and improve fertility of LepR null female mice. We initially assessed the colocalization of gonadotropin-releasing hormone receptor (GnRHR) and LepR in the HPG axis using GnRHR-IRES-Cre (GRIC) and LepR-Cre reporter (tdTomato or enhanced green fluorescent protein) mice. We found that GRIC and leptin-induced phosphorylation of STAT3 are expressed in distinct hypothalamic neurons. Whereas LepR-Cre was observed in theca cells, GRIC expression was rarely found in the ovarian parenchyma. In contrast, a subpopulation of gonadotropes expressed the LepR-Cre reporter gene (tdTomato). We then crossed the GRIC mice with the LepR null reactivable (LepR(loxTB)) mice. These mice showed an increase in FSH levels, but they remained in a prepubertal state. Together with previous findings, our data indicate that leptin-selective action in gonadotropes serves a role in adult reproductive physiology but is not sufficient to allow pubertal maturation in mice.


Assuntos
Fertilidade/fisiologia , Hormônio Foliculoestimulante/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Puberdade/fisiologia , Receptores LHRH/metabolismo , Receptores para Leptina/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Receptores para Leptina/genética
18.
Am J Physiol Endocrinol Metab ; 300(5): E858-69, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21343543

RESUMO

Acute exposure to bacterial lipopolysaccharide (LPS) is a potent inducer of immune response as well as hypophagia. Nevertheless, desensitization of responses to LPS occurs during long-term exposure to endotoxin. We induced endotoxin tolerance, injecting repeated (6LPS) LPS doses compared with single (1LPS) treatment. 1LPS, but not 6LPS group, showed decreased food intake and body weight, which was associated with an increased plasma leptin and higher mRNA expression of OB-Rb, MC4R, and SOCS3 in the hypothalamus. Hypophagia induced by 1LPS was associated with lower levels of 2-arachidonoylglycerol (2-AG), increased number of p-STAT3 neurons, and decreased AMP-activated protein kinase (AMPK) activity. Desensitization of hypophagia in the 6LPS group was related to high 2-AG, with no changes in p-STAT3 or increased p-AMPK. Leptin decreased food intake, body weight, 2-AG levels, and AMPK activity and enhanced p-STAT3 in control rats. However, leptin had no effects on 2-AG, p-STAT3, or p-AMPK in the 1LPS and 6LPS groups. Rats treated with HFD to induce leptin resistance showed neither hypophagia nor changes in p-STAT3 after 1LPS, suggesting that leptin and LPS recruit a common signaling pathway in the hypothalamus to modulate food intake reduction. Desensitization of hypophagia in response to repeated exposure to endotoxin is related to an inability of leptin to inhibit AMPK phosphorylation and 2-AG production and activate STAT3. SOCS3 is unlikely to underlie this resistance to leptin signaling in the endotoxin tolerance. The present model of prolonged inflammatory challenge may contribute to further investigations on mechanisms of leptin resistance.


Assuntos
Ingestão de Alimentos/fisiologia , Inflamação/fisiopatologia , Leptina/fisiologia , Animais , Ácidos Araquidônicos/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Dieta , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Endocanabinoides , Endotoxinas/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Glicerídeos/fisiologia , Imuno-Histoquímica , Inflamação/induzido quimicamente , Interleucina-10/biossíntese , Interleucina-10/genética , Leptina/sangue , Lipopolissacarídeos/farmacologia , Masculino , Fosforilação , Ratos , Ratos Wistar , Receptor Tipo 4 de Melanocortina/biossíntese , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/fisiologia , Receptores de Interleucina-10/biossíntese , Receptores de Interleucina-10/genética , Receptores para Leptina/biossíntese , Receptores para Leptina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Proteínas Supressoras da Sinalização de Citocina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...